

Available online at www.sciencedirect.com

Journal ofOrgano metallic Chemistry

Journal of Organometallic Chemistry 690 (2005) 1467-1473

www.elsevier.com/locate/jorganchem

Solubility of *trans*-Co₂(CO)₆ $[3,5-bis(CF_3)C_6H_3P(i-C_3H_7)_2]$ in dense carbon dioxide

Nicolaus Dahmen, Pia Griesheimer, Piotr Makarczyk, Stephan Pitter *, Olaf Walter

Forschungszentrum Karlsruhe, Institut für Technische Chemie, Bereich Chemisch-Physikalische Verfahren, P.O. Box 3640, D-76021 Karlsruhe, Germany

> Received 12 July 2004; accepted 18 November 2004 Available online 22 January 2005

Abstract

The title compound (1) was prepared by the reaction of 3,5-bis(CF₃)C₆H₃P(*i*-C₃H₇)₂ (**L**1) and Co₂(CO)₈. Its solubility in supercritical carbon dioxide was measured at varying temperatures and pressures using a modified analytical extraction device. Solubility data were determined in the temperature and pressure ranges between 40 and 70 °C and between 100 and 300 bar, respectively. The solubility of **1** is lower compared to (*p*-CF₃C₆H₄)₃P, but much higher than for transition metal complexes bearing phosphines without fluorinated substituents.

© 2004 Elsevier B.V. All rights reserved.

Keywords: Cobalt carbonyl complexes; Supercritical carbon dioxide; Metal complex solubilities

1. Introduction

Multi-phase catalysis allows for process steps, by means of which the reacting components can be separated easily for further purification or reprocessing of the catalyst and/or the unreacted substrate. Apart from aqueous systems and those based on ionic liquids, potential use of supercritical fluids (SCFs) was particularly investigated in the past decade [1–3]. SCFs in general allow to combine a homogeneous reaction in a single phase with a subsequent separation step, e.g., in a two-phase system only by adjusting temperature and/ or pressure. Additionally, the high compressibilities of supercritical fluids in particular near their critical points are supposed to result in pressure effects on reactions in SCFs far more than at low pressures [4]. Investigations on variations of selectivities or rates of reactions in

E-mail address: stephan.pitter@itc-cpv.fzk.de (S. Pitter).

SCFs as functions of pressure have been reported by several research groups and reviewed over the past years [5,6].

Our interest is directed towards the fundamental understanding of which parameters adequately characterize and influence a homogeneously catalyzed process using supercritical carbon dioxide (*sc* CO₂) as the reaction medium ($T_c = 31.05 \text{ °C}$, $p_c = 73.9 \text{ bar}$). When studying an integrated reaction-separation approach, knowledge of the phase behaviour of the participating components and especially of the catalyst solubilities, on basis of which a later process development can take place, obviously is indispensable. This knowledge allows for the setting of optimum reaction conditions [7] as well as for the design of an efficient post-reaction separation [8,9].

Recently, we studied the solubility of different substituted phosphines in sc CO₂, which may also act as coligands in homogeneously catalyzed reactions [10,11]. It was found that fluorination generally allows for higher solubilities compared to the unmodified derivatives.

^{*} Corresponding author. Tel.: +49 7247 822308; fax: +49 7247 822244.

⁰⁰²²⁻³²⁸X/\$ - see front matter © 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2004.11.053

Based on empirical findings, similar fluorination concepts have been also transferred to homogeneous transition metal catalysis [12].

The present paper describes solubility measurements of an organometallic transition metal pre-catalyst *trans*-Co₂(CO)₆ [3,5-bis(CF₃)C₆H₃P(*i*-C₃H₇)₂] (1), referring to a process variant, in which product separation is to be achieved by a thermally or pressure-controlled phase separation, while the catalyst remains dissolved in *sc* CO₂. Complexes like 1 with electron-rich substituents at the phosphorous are promising candidates for certain transition metal-catalyzed reactions, e.g., hydroformylation of long-chained olefins. Most recently, ethylene and propylene hydroformylation in *sc* CO₂ utilizing Co₂(CO)₆[P(4-CF₃C₆H₄)₃]₂ was demonstrated by Rathke and co-workers [13].

2. Results and discussion

2.1. Synthesis of 3,5-bis $(CF_3)C_6H_3P(i-C_3H_7)_2$ (L1) and trans- $Co_2(CO)_6$ [3,5-bis $(CF_3)C_6H_3P(i-C_3H_7)_2$] (1)

L1 is synthesized by the Grignard reaction of $3,5-(CF_3)_2C_6H_3MgBr$ with $(i-C_3H_7)_2PCl$ in Et₂O with a yield of 90%. In analogy with the syntheses of other

derivatives of the *trans*-Co₂(CO)₆(phosphine)₂ type, further reaction of L1 in a benzene solution with Co₂(CO)₈ yields 1 [14]. The spectroscopic data of L1 and 1 listed in Section 4.1 are as expected for these types of compounds.

2.2. Molecular structure of the cobalt complex 1

Red crystals of 1 were obtained from a mixture of dichloromethane and pentane. The molecular structure of 1 is shown in Fig. 1.

1 crystallizes in the monoclinic space group P2(1)/c with a centre of inversion between the cobalt atoms. One of the CF₃ groups is rotatory disordered (F31, F32, F33). The phosphine ligands are orientated *trans* to each other, which is the usual conformation of complexes of the type $Co_2(CO)_6(phosphine)_2$. All bond lengths and angles are in the range of those of similar derivatives with the cobalt centres being trigonal-bipyramidally coordinated and carbonyl ligands showing a nearly perfect linearity [15–17].

2.3. Solubility measurements

To determine solubilities of solids in sc CO₂, an extraction apparatus was constructed as shown in

Fig. 1. Molecular structure of **1** in the crystal. Selected bond distances (pm) and angles (°): Co(1)-C(1) 177.9(2), Co(1)-P(1) 219.63(6), Co(1)-Co(1A) 267.08(6), P(1)-C(10) 184.1(2), F(21)-C(17) 132.2(3), O(1)-C(1) 115.2(3) and C(1)-Co(1)-C(2) 118.87(11), C(1)-Co(1)-P(1) 96.77(7), C(1)-Co(1)-Co(1A) 83.36(7), P(1)-Co(1)-Co(1A) 178.07(2), C(4)-P(1)-Co(1) 117.84(7), C(10)-P(1)-Co(1) 114.58(7).

Fig. 2 [18–21]. The apparatus mainly consists of a syringe pump (A) (ISCO model 100DX), a supercritical fluid extraction oven (C) containing an extraction vessel of 10 ml volume (D) (ISCO SSX2-10), and a backpressure regulator (F) (JASCO model 880-81).

To allow for solubility measurements by a dynamic procedure, equilibrium conditions have to be established in the extraction cell. If a sufficiently low flow rate is adjusted, the CO_2 passing the extraction cell is loaded with an equilibrium substance amount in the steady state. To determine the optimum flow rate of *sc* CO₂, the solid is extracted at different flow rates. Starting from a somewhat high value, decrease of the flow rate results in an increased concentration of the solid in the fluid. At a certain flow rate, the solution is saturated. Further reduction of the flow rate does not cause any further changes of the concentration.

2.4. Solubility of 1

The determination of solubilities of organometallic complexes, as described here with 1 being used as an example, yields reproducible data without any decomposition of the complex being observed. It is applicable to solids of low volatility and needs gram quantities of the sample. The extraction method applied here (for experimental details see Section 4.3) allows for the measurement of solubilities of 1 up to concentrations of approx. 20 g l^{-1} . At higher concentrations, the expansion tube of the back pressure regulator control may be plugged by complex particles occur. Hence it was possible to measure the solubility of 1 within the technically relevant range of 100 up to 237 bar, but not above 237 bar.

The appropriate flow rate for the extraction method was established in experiments at 200 bar and 50 °C using CO₂ flow rates of 1.25, 0.625, 0.313, and 0.125 ml min⁻¹. During the extraction, no decomposition of the complex was observed, as confirmed by IR

and ³¹P NMR spectroscopy. According to Fig. 3, the same complex quantities were extracted at flow rates of 0.313 and 0.125 ml min⁻¹ within the experimental error of $\pm 5\%$. For this reason, a flow rate of 0.313 ml min⁻¹ was used for all further experiments.

The effect of temperature on the solubility of 1 was investigated in a series of experiments at the same CO₂ density (0.75 g cm⁻³). The results are shown in Table 1. The temperature which generally may affect the solubility of volatile compounds in compressed fluids has a minor impact only on the solubility of 1 in the investigated range. At temperatures of 50, 60, and 70 °C, approximately the same quantities of 1 are extracted. The lower solubility at 40 °C is believed to be mainly caused by the temperature influence on the solubility kinetics.

The solubilities of 1 at 50 °C and various pressures are compiled in Table 2. It is well known that one important factor influencing the solubility in $sc \text{ CO}_2$ is the density of the fluid [3]. Compared to the solubility of different substituted phosphines in sc CO₂ published earlier, lower solubilities of the corresponding complexes may be expected in general [22]. The findings reported here confirm that 1, a metal complex coordinated by fluorinated phosphine ligands, is less soluble than non-coordinating fluorinated phosphines (Fig. 4, \blacklozenge and ullet). Interestingly, the dependence of solubility on the CO₂ density shows a similar characteristic curve that exhibits a sharp bend for both complex 1 and the related ligand P(4-CF₃C₆H₄)₃ [10]. The significance and the cause of this bend are not yet clear and still under investigation. Compared to 1, the non-fluorinated complex $(Ph_3P)_2NiCl_2$ (\blacktriangle) [22] is poorly soluble in CO₂ even at a somewhat higher temperature, whereas the curve is similar shaped to that of $Ph_3P(\blacksquare)$ which again is much better soluble in sc CO₂ according to the other findings. Note that with the method reported here solubility measurement of the liquid phosphine L1 is experimentally not feasible (see also Section 2.3).

Fig. 2. Extraction device consisting of: A, CO₂ cylinder; B, syringe pump; C, oven; D, extraction cell; E, particle filter; F, back-pressure regulator; G, sampling tube.

Fig. 3. Extraction of 1 at 50 °C in CO₂ at varying flow rates.

Table 1 Solubility of 1 in CO₂ (density 0.75 g cm⁻³) at various temperatures

<i>T</i> (°C)	p (bar)	Solubility (g l^{-1})	Solubility (mM)
40	133.5	1.1 ± 0.1	1.1 ± 0.1
50	175.0	2.5 ± 0.3	2.7 ± 0.3
60	217.5	2.6 ± 0.3	2.7 ± 0.3
70	260.0	2.5 ± 0.5	2.6 ± 0.5

Table 2 Solubility of 1 at 50 °C in CO_2 at various pressures

p (bar)	CO_2 density (g cm ⁻³)	Solubility (g l^{-1})	Solubility (mM)
100	0.38	<0.1	< 0.1
125	0.61	0.7 ± 0.1	0.8 ± 0.1
150	0.70	2.1 ± 0.2	2.2 ± 0.2
175	0.75	2.5 ± 0.3	2.7 ± 0.3
200	0.78	2.7 ± 0.1	2.8 ± 0.1
213	0.80	7.0 ± 0.7	7.4 ± 0.7
225	0.81	11.4 ± 0.4	12.1 ± 0.4
237	0.82	15.8 ± 0.8	16.7 ± 0.9

3. Conclusion

The synthesis of $[trans-Co_2(CO)_6{3,5-bis(CF_3)-}$ $C_6H_3P(i-C_3H_7)_2$ (1) and its solubility in supercritical carbon dioxide is reported. The solubility of 1 is low compared to non-coordinated phosphines, but high compared to transition metal complexes bearing phosphines without fluorinated substituents. Solubility data were determined between 40 and 70 °C, but at higher temperatures, however, a change of crystal structure or melting of the compound could result in a remarkable solubility change. Therefore, future measurements on liquids, for example, on non-coordinated phosphines or on solids which undergo melting induced by CO₂ pressure, would require an alternative approach for the determination of solubility data. The development of an appropriate experimental setup for such measurements is currently under way and will be reported in the near future.

Fig. 4. Solubility of $(p-CF_3C_6H_4)_3P - (47 \text{ °C})$ [10], $Ph_3P - (47 \text{ °C})$ [10], 1 - (50 °C), and $(Ph_3P)_2NiCl_2 - (55 \text{ °C})$ [22] in CO₂ at varying pressures.

4. Experimental

4.1. Syntheses

All manipulations were performed under an atmosphere of dry argon using standard Schlenk techniques. 3,5-Bis(CF₃)C₆H₄-Br (ABCR) and (*i*-C₃H₇)₂PCl (Aldrich) were distilled prior to use. $Co_2(CO)_8$ (Aldrich) was crystallized from pentane.

The NMR spectra of 1 and L1 were recorded on a Bruker Avance 250 spectrometer at 298 K. ¹H NMR: 250.13 MHz, internal reference CDC1₃ (δ = 7.27) relative to SiMe₄ ($\delta = 0$ ppm); ¹³C{¹H} NMR: 62.90 MHz, internal reference CDC1₃ (δ = 77.00) relative to SiMe₄ $(\delta = 0 \text{ ppm}); {}^{31}P{}^{1}H}$ NMR: 101.25 MHz, internal reference 85% H₃PO₄ ($\delta = 0$ ppm). Chemical shifts and coupling constants are given in ppm and Hz, respectively. IR spectra were recorded on a Perkin–Elmer, System 2000 FT-IR, as a Nujol film (Nujol dried using K/ Na alloy) or in KBr (KBr dried at 500 °C for several hours). EI-MS (70 eV) spectra were obtained from GC-MS analysis with a Hewlett-Packard 5890/5922 instrument. ESI-MS spectra were measured on a Hewlett-Packard Series 1100 MSD and HR-EI-MS on Micromass GCT.

Melting or decomposition points were determined on a Büchi B545 melting-point apparatus. Elemental analyses were performed by Hermann Kolbe Micro Analytical Laboratory (Mülheim/Ruhr, Germany).

4.1.1. $(i-C_3H_7)_2PC_6H_3(CF_3)_2$, L1

A round flask with stirrer was charged with magnesium turnings (0.912 g, 37.50 mM) in 5 ml Et₂O with two drops of 1,2-dibromoethane. A solution of 3,5- $(CF_3)_2C_6H_3$ Br (10.00 g, 34.13 mM) in 50 ml Et₂O was added drop wise to the magnesium turnings under stirring. The reaction mixture was refluxed for two hours and then filtrated. Within 1 h at 0 °C, the Grignard solution was added to the solution of $(i-C_3H_7)_2PCl$ (5.21 g, 34.13 mM) in 40 ml diethyl ether. After warming up, the mixture was hydrolyzed with degassed water. The organic layer was separated, dried over MgSO₄, and the solvent was removed in vacuum. The dark brownish liquid was distilled under vacuum at 60 °C, yielding 10.0 g (90%) of L1 as a colorless liquid.

¹H NMR: 0.78 (dd, ${}^{3}J_{H,H} = 6.87$, ${}^{3}J_{H,P} = 11.3$ Hz, 6H, CH₃), 0.96 (dd, ${}^{3}J_{H,H} = 7.12$, ${}^{3}J_{H,P} = 15.25$, 6H, CH₃), 2.04 (m, 2H, CH–P), 7.74 (s, 1H, Ph), 7.80 (d, ${}^{3}J_{C-P} = 5.5$, 2H, Ph). ${}^{31}P$ NMR: 13.38 (s). ${}^{13}C$ NMR: 18.30 (d, ${}^{2}J_{C,P} = 8.05$, CH₃), 19.26 (d, ${}^{2}J_{C,P} = 18.39$, CH₃), 22.86 (d, ${}^{1}J_{C,P} = 13.79$, CH–P), 122.57 (m, CH, Ph), 123.67 (q, ${}^{1}J_{C,F} = 273.5$, CF₃), 131.40 (dq, ${}^{2}J_{C,F} = 36.6$, ${}^{3}J_{C}$ P = 6.90, C, Ph), 134.16 (d, ${}^{2}J_{C,P} = 19.54$, CH, Ph) 139.59 (d, ${}^{1}J_{C,P} = 27.58$, C–P, Ph). IR (Nujol): 1355 s, 1279 s, 1183 s, b, 1140 vb, vs, 1098 w, 1023 vw, 899 w, 843 vw, 708 w, 682 w. EI-MS, m/z (relative abundance): 330 (M⁺), 311 (C₁₄H₁₇F₅P⁺), 288 (C₁₁H₁₁F₆P⁺), 246 (C₈H₅F₆P⁺), 227 (C₈H₅F₅P⁺), 195 (C₈H₄F₅⁺) 43 (C₃H₇⁺). HR-EI-MS (C₁₄H₁₇F₆P), m/z (calculated): 330.0983 (330.0972).

4.1.2. $Co_2(CO)_6 [3,5-bis(CF_3)C_6H_3P(i-C_3H_7)_2]$ (1)

The solution of L1 (10.000 g, 30.27 mM) in 40 ml benzene was added drop wise to the solution of $Co_2(CO)_8$ (5.1778 g, 15.14 mM) in 60 ml benzene. The reaction mixture was refluxed and stirred for 6 hours. After cooling to 25 °C, the solvent was removed in vacuum and the red coloured crude product (yield >95%) was washed twice with *n*-pentane. 1 (MP 144 °C, decomposition) was crystallized from a 1:5 mixture of CH₂Cl₂/ pentane (68% yield).

³¹P NMR: 90.3 (s). IR: 1973 w, 1952, vs, vb 1357 s, 1279 s, 1185 s, 1138 vs 1124 sh, 1096 w, 1052 vw, 905 w, 843 vw, 705 w, 683 w, 650 s, 536 w, 511 w, 500 w, 466 vw. ESI-MS, m/z (relative abundance): 984 (C₃₄F₁₂H₃₅NaNO₆P₂Co₂⁺; M⁺ + Na + NH₃ – 2H), 968 (C₃₄H₃₃F₁₂P₂O₆Co₂Na⁺, M⁺ + Na – H), 903 (C₃₁H₂₆-F₁₂P₂O₆Co₂⁺, M⁺ - C₃H₇), 369 (C₁₄H₁₉F₆PNNa⁺; L1 + Na – H + NH₃), 347 (C₁₄H₂₀F₆PN⁺; L1 + NH₃).

Table 3

Crystallographic data of 1 (standard deviations in parentheses)

Empirical formula $C_{34}H_{34}Co_2F_{12}O_6P_2$ Formula weight946.41Crystal size (mm ³) $0.45 \times 0.45 \times 0.1$ Crystal systemMonoclinicSpace group $P2_1/c$ (no. 14)Unit cell dimensions $1019.79(17)$ b $1293.2(2)$ c $1610.1(3)$ β $108.034(3)$ Volume (pm ³) $2019.1(6) \times 10^6$ Z 2 D_{calc} (g cm ⁻³) 1.557 DiffractometerSiemens SMART 1000 CCD $diffractometer$ 000 $del Range$ (°) $2.06 \leqslant \theta \leqslant 28.31$ Scan ω scan, $\Delta \omega = 0.3^\circ$ Index ranges $-13 \leqslant h \leqslant 13, -16 \leqslant k \leqslant 17, -21 \leqslant l \leqslant 21$ Number of reflections measured 20697 Independent reflections 4844		1 ,
Formula weight946.41Crystal size (mm³) $0.45 \times 0.45 \times 0.1$ Crystal systemMonoclinicSpace group $P2_1/c$ (no. 14)Unit cell dimensions $1019.79(17)$ b $1293.2(2)$ c $1610.1(3)$ β $108.034(3)$ Volume (pm³) $2019.1(6) \times 10^6$ Z 2 D_{calc} (g cm ⁻³) 1.557 DiffractometerSiemens SMART 1000 CCDWavelengthMo K α , graphite monochromatorTemperature (K) 200 θ Range (°) $2.06 \leqslant \theta \leqslant 28.31$ Scan ω scan, $\Delta \omega = 0.3^\circ$ Index ranges $-13 \leqslant h \leqslant 13, -16 \leqslant k \leqslant 17, -21 \leqslant l \leqslant 21$ Number of reflections measured 20697 Independent reflections 4844 Deflecting charge descent $2074 (l \ge 2c)$	Empirical formula	$C_{34}H_{34}Co_2F_{12}O_6P_2$
Crystal size (mm³) $0.45 \times 0.45 \times 0.1$ Crystal systemMonoclinicSpace group $P2_1/c$ (no. 14)Unit cell dimensions $1019.79(17)$ b $1293.2(2)$ c $1610.1(3)$ β $108.034(3)$ Volume (pm³) $2019.1(6) \times 10^6$ Z 2 D_{calc} (g cm ⁻³) 1.557 DiffractometerSiemens SMART 1000 CCD $diffractometer$ $000 \ e \ e \ e \ e \ e \ e \ e \ e \ e $	Formula weight	946.41
Crystal systemMonoclinicSpace group $P2_1/c$ (no. 14)Unit cell dimensions $1019.79(17)$ b $1293.2(2)$ c $1610.1(3)$ β $108.034(3)$ Volume (pm ³) $2019.1(6) \times 10^6$ Z 2 D_{calc} (g cm ⁻³) 1.557 DiffractometerSiemens SMART 1000 CCDdiffractometer 000×200 θ Range (°) $2.06 \leqslant \theta \leqslant 28.31$ Scan ω scan, $\Delta \omega = 0.3^\circ$ Index ranges $-13 \leqslant h \leqslant 13, -16 \leqslant k \leqslant 17, -21 \leqslant l \leqslant 21$ Number of reflections measured 20697 Independent reflections 4844 Deducting a harmond $2074 (l \ge 2c)$	Crystal size (mm ³)	$0.45 \times 0.45 \times 0.1$
Space group $P2_1/c$ (no. 14)Unit cell dimensions1019.79(17) a 1019.79(17) b 1293.2(2) c 1610.1(3) β 108.034(3)Volume (pm³)2019.1(6) × 10^6 Z 2 D_{calc} (g cm ⁻³)1.557DiffractometerSiemens SMART 1000 CCDdiffractometer00 θ Range (°)2.06 $\leq \theta \leq 28.31$ Scan ω scan, $\Delta \omega = 0.3^{\circ}$ Index ranges $-13 \leq h \leq 13, -16 \leq k \leq 17, -21 \leq l \leq 21$ Number of reflections measured20697Independent reflections4844Deducting a harmond2074 ($l \geq 2n$)	Crystal system	Monoclinic
Unit cell dimensions1019.79(17) a 1019.79(17) b 1293.2(2) c 1610.1(3) β 108.034(3)Volume (pm³)2019.1(6) × 10^6 Z 2 D_{calc} (g cm ⁻³)1.557DiffractometerSiemens SMART 1000 CCDdiffractometerdiffractometerWavelengthMo K α , graphite monochromatorTemperature (K)200 θ Range (°)2.06 $\leq \theta \leq 28.31$ Scan ω scan, $\Delta \omega = 0.3^{\circ}$ Index ranges $-13 \leq h \leq 13, -16 \leq k \leq 17, -21 \leq l \leq 21$ Number of reflections measured20697Independent reflections4844Deductions charged2074 ($l \geq 2c$)	Space group	$P2_1/c$ (no. 14)
a1019.79(17)b1293.2(2)c1610.1(3) β 108.034(3)Volume (pm³)2019.1(6) × 10^6Z2 D_{calc} (g cm ⁻³)1.557DiffractometerSiemens SMART 1000 CCDdiffractometerMo K α , graphite monochromatorWavelengthMo K α , graphite monochromatorTemperature (K)200 θ Range (°)2.06 $\leq \theta \leq 28.31$ Scan ω scan, $\Delta \omega = 0.3^{\circ}$ Index ranges $-13 \leq h \leq 13, -16 \leq k \leq 17, -21 \leq l \leq 21$ Number of reflections measured20697Independent reflections4844Deflections charged2074 ($l \geq 2c$)	Unit cell dimensions	
b1293.2(2)c1610.1(3) β 108.034(3)Volume (pm³)2019.1(6) × 10^6Z2 D_{calc} (g cm ⁻³)1.557DiffractometerSiemens SMART 1000 CCDdiffractometerdiffractometerWavelengthMo K α , graphite monochromatorTemperature (K)200 θ Range (°)2.06 $\leq \theta \leq 28.31$ Scan ω scan, $\Delta \omega = 0.3^{\circ}$ Index ranges $-13 \leq h \leq 13, -16 \leq k \leq 17, -21 \leq l \leq 21$ Number of reflections measured20697Independent reflections4844Deductions charged2074 ($l \geq 2x$)	a	1019.79(17)
c1610.1(3) β 108.034(3)Volume (pm³)2019.1(6) × 10^6Z2 D_{cale} (g cm ⁻³)1.557DiffractometerSiemens SMART 1000 CCDdiffractometerdiffractometerWavelengthMo K α , graphite monochromatorTemperature (K)200 θ Range (°)2.06 $\leq \theta \leq 28.31$ Scan ω scan, $\Delta \omega = 0.3^{\circ}$ Index ranges $-13 \leq h \leq 13, -16 \leq k \leq 17, -21 \leq l \leq 21$ Number of reflections measured20697Independent reflections4844Deflectione charged2074 ($l \geq 2c$)	b	1293.2(2)
β 108.034(3)Volume (pm³)2019.1(6) × 10^6Z2 D_{calc} (g cm ⁻³)1.557DiffractometerSiemens SMART 1000 CCDdiffractometerdiffractometerWavelengthMo K α , graphite monochromatorTemperature (K)200 θ Range (°)2.06 $\leq \theta \leq 28.31$ Scan ω scan, $\Delta \omega = 0.3^{\circ}$ Index ranges $-13 \leq h \leq 13, -16 \leq k \leq 17, -21 \leq l \leq 21$ Number of reflections measured20697Independent reflections4844Deductions charged2074 ($l \geq 2n$)	С	1610.1(3)
Volume (pm³) $2019.1(6) \times 10^6$ Z2 D_{calc} (g cm ⁻³)1.557DiffractometerSiemens SMART 1000 CCDdiffractometerdiffractometerWavelengthMo K α , graphite monochromatorTemperature (K)200 θ Range (°) $2.06 \leqslant \theta \leqslant 28.31$ Scan ω scan, $\Delta \omega = 0.3^{\circ}$ Index ranges $-13 \leqslant h \leqslant 13, -16 \leqslant k \leqslant 17, -21 \leqslant l \leqslant 21$ Number of reflections measured20697Independent reflections4844Parlarting charged2074 (l > 2 c)	β	108.034(3)
Z2 D_{calc} (g cm ⁻³)1.557DiffractometerSiemens SMART 1000 CCD diffractometerWavelengthMo K α , graphite monochromator 200 θ Range (°)2.06 $\leq \theta \leq 28.31$ ω scan, $\Delta \omega = 0.3^{\circ}$ Scan ω scan, $\Delta \omega = 0.3^{\circ}$ Index ranges $-13 \leq h \leq 13, -16 \leq k \leq 17, -21 \leq l \leq 21$ Number of reflections measured20697Independent reflections4844Parl actions a charged2074 (l \geq 2c)	Volume (pm ³)	$2019.1(6) \times 10^{6}$
D_{calc} (g cm ⁻³)1.557DiffractometerSiemens SMART 1000 CCD diffractometerWavelengthMo K α , graphite monochromator 200 θ Range (°)2.06 $\leq \theta \leq 28.31$ ω scan, $\Delta \omega = 0.3^{\circ}$ Scan ω scan, $\Delta \omega = 0.3^{\circ}$ Index ranges $-13 \leq h \leq 13, -16 \leq k \leq 17, -21 \leq l \leq 21$ Number of reflections measured20697Independent reflections4844Defension charged2074 (l \geq 2c)	Ζ	2
DiffractometerSiemens SMART 1000 CCD diffractometerWavelengthMo K α , graphite monochromatorTemperature (K)200 θ Range (°) $2.06 \leq \theta \leq 28.31$ ω scan, $\Delta \omega = 0.3^{\circ}$ Index ranges $-13 \leq h \leq 13, -16 \leq k \leq 17, -21 \leq l \leq 21$ Number of reflections measured20697Independent reflections4844Parl actions a charge of the start of the	$D_{\text{calc}} (\text{g cm}^{-3})$	1.557
diffractometerWavelengthMo K α , graphite monochromatorTemperature (K)200 θ Range (°) $2.06 \leq \theta \leq 28.31$ Scan ω scan, $\Delta \omega = 0.3^{\circ}$ Index ranges $-13 \leq h \leq 13, -16 \leq k \leq 17, -21 \leq l \leq 21$ Number of reflections measured20697Independent reflections4844Partners a barrier2074 (l > 2 c)	Diffractometer	Siemens smart 1000 CCD
WavelengthMo K α , graphite monochromatorTemperature (K)200 θ Range (°) $2.06 \leq \theta \leq 28.31$ Scan ω scan, $\Delta \omega = 0.3^{\circ}$ Index ranges $-13 \leq h \leq 13, -16 \leq k \leq 17, -21 \leq l \leq 21$ Number of reflections measured20697Independent reflections4844Participar harmed2074 (l > 2 c)		diffractometer
Temperature (K)200 θ Range (°) $2.06 \le \theta \le 28.31$ Scan ω scan, $\Delta \omega = 0.3^{\circ}$ Index ranges $-13 \le h \le 13, -16 \le k \le 17,$ Number of reflections measured 20697 Independent reflections 4844 Deductions charged $2074 (I \ge 2\pi)$	Wavelength	Mo Ka, graphite monochromator
$\begin{array}{ll} \theta \text{ Range } (^{\circ}) & 2.06 \leqslant \theta \leqslant 28.31 \\ \text{Scan} & \omega \text{ scan, } \Delta \omega = 0.3^{\circ} \\ \text{Index ranges} & -13 \leqslant h \leqslant 13, -16 \leqslant k \leqslant 17, \\ -21 \leqslant l \leqslant 21 \\ \text{Number of reflections measured} & 20697 \\ \text{Independent reflections} & 4844 \\ \text{Deductions charged} & 2074 \ (l \gtrsim 2c) \end{array}$	Гетрегаture (K)	200
Scan ω scan, $\Delta \omega = 0.3^{\circ}$ Index ranges $-13 \leq h \leq 13, -16 \leq k \leq 17,$ $-21 \leq l \leq 21$ 20697 Independent reflections 4844 Deductions charged $2074 \ (l \geq 2r)$	ϑ Range (°)	$2.06 \leqslant \theta \leqslant 28.31$
Index ranges $-13 \le h \le 13, -16 \le k \le 17,$ $-21 \le l \le 21$ Number of reflections measured20 697Independent reflections4844Defentions charged2074 ($l \ge 2r$)	Scan	$\omega \operatorname{scan}, \Delta \omega = 0.3^{\circ}$
Number of reflections measured $-21 \le l \le 21$ Number of reflections measured 20697 Independent reflections 4844 Productions charged $2074 \ (l \ge 2\pi)$	Index ranges	$-13 \leqslant h \leqslant 13, -16 \leqslant k \leqslant 17,$
Number of reflections measured 20697 Independent reflections 4844 Deflections 2074 (I > 2 -)		$-21 \leq l \leq 21$
Independent reflections 4844	Number of reflections measured	20 697
$D = f(z) = \frac{1}{2} + 1$	Independent reflections	4844
Kellections observed $39/4 (1 > 2\sigma)$	Reflections observed	3974 ($I > 2\sigma$)
Number of parameters refined 290	Number of parameters refined	290
Residual electron density (e pm^{-3}) $0.56 \times 10-6$	Residual electron density (e pm^{-3})	$0.56 \times 10-6$
Corrections Lorentz and polarization,	Corrections	Lorentz and polarization,
exp. absorption correction		exp. absorption correction
Structure solution Direct methods	Structure solution	Direct methods
Structure refinement Full-matrix least-square on F_2	Structure refinement	Full-matrix least-square on F_2
Programs and weightings used SHELX-97 [23], XPMA,	Programs and weightings used	shelx-97 [23], xpma,
ZORTEP [24]		ZORTEP [24]
$R \text{ indices} \qquad \qquad R_1 = 0.0363 \ (I > 2\sigma)$	R indices	$R_1 = 0.0363 \ (I > 2\sigma)$
$Rw = 0.0992$ (all data against F^2		$Rw = 0.0992$ (all data against F^2)

Fig. 5. Solubility of naphthalene in CO₂ at 55 °C. Own measurement – \blacklozenge , Chang/Morell [18] \blacklozenge , McHugh/Paulaitis – \blacktriangle , [25], Mitra et al. – \blacksquare [19], Lamb et al. – \ddagger [26].

Elemental analysis: % found (calculated) C, 42.90 (43.13), H, 3.64 (3.62).

4.2. X-ray crystallography

Red crystals of **1** suitable for X-ray analysis were grown from CH₂Cl₂/pentane solution. All diffraction data were collected on a Siemens SMART 1000 CCD diffractometer (Table 3). Crystallographic data of the structure have been stored at the Cambridge Crystallographic Database Centre, Supplementary publication Nos. CCDC 242209 (1). Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44-1223-336033; e-mail: deposit@ccdc.cam. ac.uk or www: http://www.ccdc.cam.ac.uk).

4.3. Solubility measurements

The solid (up to 2 g) is placed on a bed of glass beads (0.25–0.5 mm) inside the extraction cell **D** (see Fig. 1, Section 2.1) having a volume of 10 ml which is heated to the temperature of measurement. To avoid the removal of solid particles from the cell, a metal frit with 2 μ m porosity was used.

The sc CO₂ is compressed to the desired pressure using the syringe pump **B**. The experiment proceeds by pumping the sc CO₂ at a constant flow rate through the extraction cell. In the extraction cell, the solid dissolves in sc CO₂ and is thereby removed from the cell. The pressure is released through a back-pressure regulator (F). As separator, specially designed glass tubes (G) with frits were used. The separator is used to vent off the gas and collect the particles precipitating while the scCO₂ solution expands. Knowing the flow rate, the time of sampling the solid, and the mass of the precipitated solid, its solubility is calculated. The separation method was examined in an experiment with a known amount of triphenylphosphine being completely extracted from the cell and collected in the glass tube with an accuracy of 99.9%.

In order to validate the method with regard to accuracy and reproducibility, solubility of naphthalene was determined. As shown in Fig. 5, the values for the solubility of naphthalene are in good agreement with other published data [18,19,25,26].

References

- [1] B. Cornils, E. Kuntz, J. Organomet. Chem. 502 (1995) 177.
- [2] E.D. Rogers, K.R. Seddon, Ionic Liquids as Green Solvents: Progress and Prospects, American Chemical Society, Washington, DC, 2003, Distributed by: Oxford University Press.
- [3] P.G. Jessop, W. Leitner, in: P.G. Jessop, W. Leitner (Eds.), Chemical Synthesis Using Supercritical Fluids, Wiley-VCH, Weinheim, 1999, Chapter 4.7.1.
- [4] R. van Eldik, F.-G. Klärner, High Pressure Chemistry Synthetic, Mechanistic, and Supercritical Applications, Wiley-VCH, New York, 2002.
- [5] P. Jessop, T. Ikariya, Y. Hsiao, T. Ikariya, R. Noyori, Chem. Rev. 99 (1999) 475.
- [6] W. Leitner, Acc. Chem. Res. 35 (2002) 746.
- [7] N. Dahmen, S. Pitter, E. Dinjus, Green Chem. 5 (2003) 218.
- [8] P. Webb, M. Sellin, T. Kunene, S. Williamson, A. Slawin, D. Cole-Hamilton, J. Am. Chem. Soc. (2003) 15577.
- [9] E. Beckman, J. Green, D. Hancu, Ind. Eng. Chem. Res. 41 (2002) 4466.
- [10] K. Wagner, N. Dahmen, E. Dinjus, Chem. Eng. Data 45 (4) (2000) 672.
- [11] T. Davis, C. Erkey, Ind. Eng. Chem. Res. 39 (2000) 367.
- [12] P.G. Jessop, W. Leitner, in: P.G. Jessop, W. Leitner (Eds.), Chemical Synthesis Using Supercritical Fluids, Wiley-VCH, Weinheim, 1999, Chapter 4.7.3.1 and references cited in.
- [13] M.J. Chen, R.J. Klingler, J.W. Rathke, K.W. Kramarz, Organometallics 23 (11) (2004) 2701.
- [14] A.R. Mannig, J. Chem. Soc. (A) (1964) 634.
- [15] R. Weber, U. Englert, B. Ganter, W. Keim, M. Möthrath, Chem. Commun. (2000) 1419.

- [16] L. Brammer, J.C.M. Rivas, Ch.D. Spilling, J. Organomet. Chem. 609 (2000) 36.
- [17] F.W.B. Einstein, R. Kirkland, Acta Cryst. B34 (1978) 1690.
- [18] H. Chang, D. Morrell, J. Chem. Eng. Data 30 (1985) 74.
- [19] S. Mitra, J.W. Chen, D. Viswanath, J. Chem. Eng. Data 33 (1988) 35.
- [20] W. Cross, A. Akgerman, Ind. Eng. Chem. Res. 35 (1996) 1765.
- [21] K. Liong, N. Foster, S. Ting, Ind. Eng. Chem. Res. 31 (1992) 400.
- [22] D. Paolo, C. Erkey, J. Chem. Eng. Data 43 (1998) 47.
- [23] G.M. Sheldrick, shelx-97, University Göttingen, Germany, 1997.
- [24] L. Zsolnai, XPMA, ZORTEP, University Heidelberg, Germany, 1997.
- [25] M. McHugh, M. Paulaitis, J. Chem. Eng. Data 25 (1980) 326.
- [26] D. Lamb, T.M. Barbara, J. Jonas, J. Phys. Chem. 90 (1986) 4210.